Factor Decomposition Analysis of Changes in CO, Emissions from **Container Operating Companies**

<u>Taiga Shimotsuura, Tomoaki Nakaishi, Shigemi Kagawa</u>

KYUSHU UNIVERSITY

1 INTRODUCTION

1 Importance of maritime transport

conducted through the sea; thus maritime transport is indispensable for world trade.

2.5% 2.0% 1.5% International shipping CO₂ emissions as a percentage of 1.0% global CO₂ emissions 0.5% Source: IMO (2021) 0% **′**17 **'**18 '14 '16 CO₂ emissions from international shipping accounted for 2% of the global CO₂ emissions.

CO₂ emission share of international shipping

3 Increasing trend of CO₂ emissions 2008

CO₂ emissions from international shipping were predicted to increase by 130% in 2050 compared with 2008 levels (IMO, 2021).

• Reducing CO₂ emissions of container shipping is necessary because container ships are the largest source of CO₂ of all types of ships.

• We considered the behavior of container ship operators, who decide the destination and routes of ships, as key factors for policymaking, and analyzed the CO₂ emissions based on detailed operator companies.

4 Purpose of this study

- 1. To estimate CO₂ emissions and identify drivers of changes in CO₂ emissions. for each company.
- 2. To discuss policies for decarbonization based on the factors.
- **5** Contributions of this study
 - We pointed out the importance of analysis from the perspective of operating companies to discuss the decarbonization policies of maritime transport.
 - This research framework is able to apply to all vessels used in international shipping and has a high academic spillover effect because it leads to the decarbonization of international shipping as a whole (SDGs 13, 14).
 - This study can promote decarbonization of all supply chains that use maritime transport (SDGs 9, 12, 13).

2 DATA AND METHODOLOGY

Basic ship information Ex) Container ship *j* of operator company *i* Deadweight

Definition of adjacency matrix Arrival: q epai D Example Network Adjacency matrix (g_{pq}^{Ji}) "Weighted" adjacency matrix $D_{pq}^{Ji} = distance_{pq} \times g_{pq}^{Ji} \blacktriangleleft$ $Q_{pq}^{j_i} = \underline{EF \times F^{j_i}} \times D_{pq}^{j_i}$ $K_{pq}^{Ji} = \underline{DWT^{j_i}} \times D_{pq}^{Ji}$ ► Transport activity \blacktriangleright CO₂ emissions *EF*: Emission factor, *F*: Fuel efficiency **CO**₂ emissions of each company CO2 Route-specific Aggregated 12.3% 12.3% Q_{pq}^{ι} Q_{pq}^{ι} $O^{\iota} =$ p=1 q=1 $p = 1, 2, \cdots, N$ $q = 1, 2, \cdots, N$ $j = 1, 2, \cdots, m_i$ 100.0%

1.5

0.5

-1.5

 $(Mt-CO_2)$

Factor decomposition analysis (LMDI) We decomposed the CO₂ emissions of operator company *i* in year *t* into four factors. $K_{pa}^{\iota}(t)$

3 RESULTS

CMA CGM (CMA)

Hapag-Lloyd (Hapag)

Ocean Network Express (ONE)

Evergreen Marine Corporation (EMC)

World

CO₂ emissions of each company

3,016,687

1,774,132

1,609,453

1,327,918

24,479,057

7.2%

6.6%

5.4%

Decomposition results in 2018-2019 (left) and 2019-2020 (right)

Company	2018		2019		2020	
Maersk	21.2	(24%)	21.4	(23%)	20.9	(23%)
MSC	21.4	(24%)	21.5	(23%)	21.1	(23%)
COSCO	11.3	(13%)	12.3	(13%)	12.4	(14%)
CMA CGM	11.6	(13%)	11.8	(13%)	12.1	(13%)
Hapag-Lloyd	9.2	(10%)	9.1	(10%)	8.9	(10%)
ONE	8.6	(10%)	9.2	(10%)	9.1	(10%)
Evergreen	6.2	(7%)	6.9	(7%)	7.2	(8%)
Total	89.6	(100%)	92.3	(100%)	91.6	(100%)
 Overall, CO₂ emissions of these companies increased 						
by 2 Mt-CO ₂ (about 2% increase) during 2018-2020.						

- A company with a larger share of shipping capacity emitted more CO_2 .
- This result indicated that it needed further efforts to decarbonize the container shipping.

- The contribution of "Structure" offset the contribution of "Intensity" to the decrease in CO₂ emissions for the three companies in 2018-2019 (left results).
- "Structure" contributed the most to the decrease in CO₂ emissions of the five companies in 2019-2020 (right results).

These results indicated that policies for shipping network structure can be effective.